
Fermi National Accelerator Laboratory 

FERMILAB-Conf-92/324 

Reducing Communication Inefficiencies 
for a Flexible Programming Paradigm 

M. Fischler, M. Gao, G. Hackney, M. Isely and M. Uchima 

Fermi National Accelerator Laboratory 
P.O. Box 500, Batauia, Illinois 60510 

November 1992 

Presented at Lattice ‘92, 
Amsterdam, Netherlands, September 13-18, 1992 

$ Operated by Unk.tiCes Research Asscckstion Inc. under Contmct No. DE-AC~Z-~~CHO~OCCI with the United Stales Dapsrbnent ot Energy 



Reducing Communication Inefficiencies For a Flexible Programming 
Paradigm 

Mark Fischler, M. Gao, G. Hackney, M. Isely,and M. Uchima n l 

‘Fermi National Accelerator Laboratory 
Batavia, IL 60510 USA 

The ACPMAPS system at Fun&b has been upgraded to 50 GF by inserting new CPU modules, based on the 
Intel iS60. This ten-fold increase in power, utilizing the identical commuuications backbone, places the system 
in a d&rent realm: The transfer latency and overheads are now greater, relative to the cost of a floating point 
operation. WC explore the consequences for programs written using CANOPY, which relies on low communicstians 
Istencies. We present techniques for alleviating the efficiency decrease, by coalescing transfers, without abandoning 
the considerable sdvautages of the CANOPY paradigm. 

1. ACPMAPS Upgrade and CANOPY 

The ACPMAPS (11 project is a collaboration be- 
tween the Fermilab Computer R&D and Theory 
departments. The system is designed for both 
algorithm exploration and lattice gauge calcula- 
tions. A concept oriented tool set-Canopy [Z]-is 
provided to facilitate natural coding of grid-like 
problems for the parallel system. 

The processing elements of *CPMAPS are 612 
nodes each consisting of an Intel ig60 CPU, along 
with 32 Mbytes of DRAM memory. Two inde- 
pendent processor nodes reside on each processor 
module. The communications scheme is hierar- 
chical in nature-at least 6 processor modules oc- 
cupy slots in each of 36 crossbar switch crates. 
The crates are, in turn, interconnected, and au- 
tomatic routing allows any node to access any 
other, going through at most one intermediate 
crate. Thus we have a low latency, %t global” 
addressing space, analogous to a phone network. 

The Canopy paradigm looks at the problem in 
terms of tasks done on sites. The sites are orga- 
nised to form B grid, with some given connectiv- 
ity (“neighboring sites”). Field data is associated 
with each site-each site can be considered B “vir- 
tual processor” with its own memory for the field 
data. Logically, all the sites involved in a given 
task run simultaneously (although of course there 
are more sites than physical CPU nodes; each 

*Fermilab is operated by Univuitiies Rcscareh Ass&m- 
tion, Inc. under contract with the U.S. Department of 
Enugy 

node will handle many sites, one at a time). So 
for example, during a task there may be occasion 
to read a field at the site one unit in the X direc- 
tion away from the site currently being worked 
on. This data may or may not reside on the lo- 
cal physical node; the Canopy software makes the 
determination, and either returns a pointer to the 
requested data, or reads the data from the remote 
node and returns a pointer to a copy of that data. 
The user need not be concerned with details of 
which node owns which sites. Canopy requires 
MIMD processing and “flat global” access, with 
a “read/write” communications model-the target 
node does not know when an access will be made, 
and need not prepare data in advance. 

The physics that has been done on ACPMAPS re- 
cently includes B and charmonium physics. Tech- 
niques for extraction of measurables have been 
explored, including operator smearing and higher 
order terms in fermion propagators [3-51. Stud- 
ies done on ACPMAPS have focused on algorithm 
exploration, and on calculations done with con- 
trols on all uncertainties[6]. These studies com- 
plement efforts on other special purpose systems, 
which tend to focus on a few specific calculations. 
To understand sources of systematic uncertainty, 
the scientist must explore varied approaches to 
a gwen problem. For work of this nature, the 
convenience and clarity of the Campy tools were 
indispensable. 

In the 5 Gflop system, communications costs 
(software overhead required to open channels, 

1 



and the time taken to transmit data) were a mi- 
nor effect, and contention effects were negligible. 
We have replaced the CPU modules based on one 
20 Mflop processor, with modules containing two 
80 Mflop processors. The number of processor 
modules was increased by 20%; the communica- 
tions hardware was left unchanged. This upgmde 
increases computational power by a factor of 10, 
without improving communication: A detailed 
analysis of the communications requirements of 
several algorithms would indicate that communi- 
cations limitations should now be important, and 
that contention effects may be critical. 

2. Efficiency Losses due to Transfer Over- 
head 

Canopy confers many advantages-at a price. It 
shields the user from the details of the system 
architecture (while still allowing the scientist to 
cleanly express the underlying parallelism of the 
problem). Also, since the number of nodes in- 
volved in LI job is arbitrary, the system can be 
shared by multiple users in an automated and ef- 
ficient manner. The price paid is that for jobs 
involving a good deal of off-node date. access, 
Canopy applications tend to do quite a few very 
short transfers, the typical transfer involving field 
data associated with B single site. 

The total internode data transferred for a 
given algorithm is not impacted by the Canopy 
paradigm, but the granularity is. Transfer over- 
heads become much more important. Simple 
overheads can become noticeable fairly quickly, 
and bottlenecks, saturation and contention is- 
sues are of still greater importance. We 
have investigated these effects for a particu- 
larly communications-bound problem (the de- 
Grand/conjugate gradient method for propaga- 
tor inversion) and (L slightly more CPU- intensive 
problem (pure gauge Monte-Carlo with Kennedy- 
Pendleton heat bath algorithm). 

Figure 1 shows efficiencies achieved when alga- 
rithms ore run on increasingly large systems, SC& 
ing the lattice sire with the number of processors. 
The lower curve represents the communications- 
intensive conjugate gradient algorithm, run with 
no attempt to group transfers. For small num- 

bers of nodes (< 16), there are fewer off-node 
accesses required, because the “chunk” of sites 
owned by each node spans the lattice in one or 
more directions. By the time 16 nodes is reached, 
every access across a chunk boundary is off-node, 
and the number of communicstions overheads per 
node per sweep remains fairly constant thereafter. 
The remaining decrease in performance is due to 
contention for communications resources. 

0 transfer coalescing enabled 

0 transfer coalescing disabled 

.75 .a 

f Eff. 00 

.50 

I 

@O 0 q 
0 

Q 0 

.25 @ 0 0 

@ 

I I 
32 

I 

Number :f’nnodes 

I 
96 

Figure 1. Efficiency VII number of nodes 

In ACPMAPS, the key communications resources 
are the buses connecting crates, since these paths 
are shared by all the nodes in the connected 
crates. A naive calculation of bandwidth require- 
ments would indicate only moderate degradations 
due to communication contention. As shown in 
figure 1, the contention effects are instead sub- 
stantial. This is because a fraction of the per- 
transfer overhead is spent with the bus open-that 
is, occupying the saturated resource. In fact, for 
typical 12-16 word transfers, the bus-open over- 
head is three times as large as the actual data 

2 



transfer time. (This is partly due to the nature of 
the i660 chip-the target “slave” node must partic- 
ipate in the transfer, responding to an interrupt.) 

Beyond simple intercrate contention, there 
can also be worse-than-linear effects for accesses 
which must traverse multiple crates. When non- 
linear contention effects tue present, the perfor- 
mance can continue to degrade as the problem 
and system sizes grow larger, in spite of the fact 
that more communications resource% come into 

play. 

3. Transfer Coalescing 

Both the CPU time lost to communications 
overheads, and the intercrate bus contention ef- 
fects, are exacerbated by the fact that the Canopy 
application tends to do many small transfers. It 
is beneficial to “coalesce” several accesses to one 
node into e. single data transfer. Several strate- 
gies might accomplish this. For example, the user 
could explicitly guide the communication, hav- 
ing the target nodes prepare large blocks of data 
for transfer in advance. (Typical applications on 
message-based systems force the user to do this.) 
We rejected this approach, since it abandons the 
Canopy paradigm, and forces the user to substan- 
tially change the structure of the program, mod- 
ifying algorithms to fit the hardware available. 

A second approach would be to create bigger 
“sites” by collapsing one dimension of the prob- 
lem. For example, a site may now be an entire 
line of points (X, Y, Z, T) for all values of T. The 
collapsed problem can still be done using Canopy, 
and typically will run efficiently since most over- 
heads are amortized over what used to be Nt sites. 
However, the user has had to sacrifice part of the 
convenience of Canopy by altering the program. 
We have implemented this approach for several 
production algorithms, to get early estimates as 
to how much gain can be achieved through trans- 
fer coalescing, and to provide efficient versions of 
early key programs. 

The approach we have settled on is “multi- 
threading.” When a field access routine requires 
off-node data, the system makes note of the data 
requested but does not perform the remote ac- 
teas. Instead, sufficient state is saved so that the 

processing for this site can continue at a later 
time, and Canopy moves on to processing another 
site (“a new thread”). Eventually, remote ac- 
cesses will be done to satisfy several of the re- 
quested accesses at a time. (This requires ef- 
ficient remote scatter/gather capabilities, which 
were easy to create for ACPMAPS, and could be 
implemented for most Canopy platforms.) Once 
the requested data is present, execution of the 
suspended threads can continue. 

The number of threads which may be active at 
one time is memory limited. Space must be re- 
served for the remote data to be gathered, and for 
stack space for each active thread. For typical ap- 
plications on ACPMAPS, we use up to 512 threads 
at one time. The efficiency gain from multi- 
threading depends on the degree of coalescing- 
how many short transfers are typically grouped 
into one longer transfer. (There is a slight per- 
block cost in the scatter/gather implementation, 
but this is tiny compared to the communications 
overhead it replaces). 

For any problem limited by communications re- 
source contention, the amortieation of resource- 
open overheads is a pure gain. Once a problem is 
back in the CPU-limited realm, this gain is dimin- 
ished by the overhead required to switch contexts 
from one thread to the next. Fortunately, this 
does not carry all the baggage normally associ- 
ated with .s context switch: when a task routine 
has called a field data access routine, only a small 
amount of state information need be saved to per- 
mit suspension of the thread. 

For the problems examined, collapsing a di- 
mension and multi-threading each yield compara- 
ble efficiency gains-this indicates that the thread- 
switching overhead is not a severe effect. Since 
multi-threading involves little user inconvenience, 
we have incorporated it into Canopy. In most 
eases the user can get these benefits simply by 
selecting multi-threading on the command that 
starts the Canopy job. 

There is one subtlety: The Canopy man- 
ual warns against using global variables which 
may be altered inside task routines- there is 
ambiguity when reading such a variable, as to 
whether another site has written a new value to 
it yet. However, global variables which are writ- 

3 



ten within 8 task, used by lower-level subroutines, 
and discarded when the task moves on to the next 
site -“task glob&“- are logically consistent, but 
will not work in multi-threaded jobs. Fortunately, 
in our experience task glob& are rarely used, and 
there is a simple prescription for modifying such 
variables for use in a multi-threaded context. 

4. Results of Multi-threading 

The extent to which multi-threading cau ellevi- 
ate communications saturation and overhead ef- 
fects will depend on what degree of coalescing is 
achieved. This is application dependent, so we 
have applied the technique to several types of 
problems. For fairly local algorithms, the degree 
of codescing tends to be around 15% of the max- 
imum number of threads auppoxted. Fox highly 
non-local but fairly regular algorithms, such as 
FFT’s, this deteriorates only slightly. There- 
fore, even if a conservative limit of 100 threads 
is imposed, the communications overheads are 
typically amortised over a substantial number of 
transfer blocks-there is potential for large gains. 

These gains are realized in practice. For 
the highly communications intensive Conjugate- 
Gradient algorithm, the efficiency of the coa- 
lesced version is shown by the upper curve in fig- 
ure 1. The efficiency levels off once more than 
16 nodes are in use. (Even when more than 500 
nodes were used, the efficiency remained about 
50%). When multi-threading is applied to the 
pure gauge Monte-Carlo, efliciencies level at 63% 
for large numbers of nodes. 

These tests studied how efficiencies scale with 
problem and system sise. The context switch- 
ing mechanism used was non-optimised, and took 
CPU time approximately equal to the communi- 
cations overhead replaced. Thus the intercrate 
contention effects are isolated, primarily affecting 
the behavior when more than 16 nodes are used. 
Once thread context switching is optimized, the 
efficiency drop between 1 and 16 nodes will be 
much smaller, and efficiencies for large numbers 
of nodes will improve by at leaat 15 - 25%. 

With multi-threading in place, the drop-off in 
efficiency when progressing from a crate of nodes 
to the entire system is not large. This indicates 

that non-linear contention effects due to multi- 
hop communications are not severely impacting 
performance. Without multi-threading, these ef- 
fects become disastrous as the number of nodes 
increases. The ACPMAPS system does automatic 
spooling and assigning of node resources. Since 
the efficiency is a fairly flat function of number 
of nodes, it becomes possible to do c. good job of 
*eaource allocation. 

Several systems other than ACPMAPS are plau- 
sible Canopy platforms, but were not designed 
with low-latency communications in mind. For 
example, the Intel DELTA has a latency for read 
acessea of about twice that of ACPMAPS, because 
two separate messages must be handled. Transfer 
coalescing techniques should allow users of such 
systems to get the convenience and benefits of the 
Canopy tool set, while retaining reasonable effi- 
ciency. 

5. Conclusions and Acknowledgments 

The point of the upgraded ACPMAPS system is 
to do lattice gauge physics, not to study com- 
puter science issues. For some applications, the 
impact of internode communications is not severe. 
But for the most effective use of a system of this 
nature, efficient xunning of tightly-coupled appli- 
cations must be supported. We have presented a 
software technique in this area. 

The authors would like to acknowledge the con- 
tributions of the lattice gauge physicists using the 
system [3, 4, 61, who supplied codes on which to 
test the effects of these techniques, and who have 
had input into the strategies chosen. 

REFERENCES 

1 M. Fischler, FERMILAB-TM-1780 (1992) 
2 Canopy 5.0 Manual, M. Fischler, G. Hock- 

ney, P. Mkekensie, available from the Fermi- 
lab Computing Division 

3 A. El-Khadrs, these proceedings 
4 E. Eichten, these proceedings 
5 H. Thacker, these proceedings 
6 A. El-Khadra, G. Hackney, A. Kronfeld, P. 

Mackenzie, Phys. Rev. Letters 69,729 (1992) 

4 


